Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters


Database
Language
Year of publication
Document type
Publication year range
1.
J Dairy Sci ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38490552

ABSTRACT

To evaluate the sodium chloride content effect on microbiological, biochemical, physicochemical and sensorial characteristics, Munster cheeses were prepared from pasteurized milk seeded with 3 yeasts (Kluyveromyces marxianus, Debaryomyces hansenii, Geotrichum candidum) and 5 ripening bacteria (Arthrobacter arilaitensis, Brevibacterium aurantiacum, Corynebacterium casei, Hafnia alvei, and Staphylococcus equorum). Experiments were performed under 1.0%, 1.7% and 2.4% NaCl levels in cheese in triplicate. Ripening (d2 - d27) was carried under 12°C and 96% RH. These kinetics were both reproducible and repeatable at 99% confidence level. For each microbial, biochemical and physicochemical parameter, 2 kinetic descriptors (maximal or minimal rate and its occurrence time) were defined. On d2 the physicochemical variables (water activity, dry matter, water content) were strongly dependent on the salting level. From d2 to d27 K. lactis was insensitive to salt while D. hansenii was stimulated. G. candidum growth appeared very sensitive to salt in cheese: at 1.0% NaCl G. candidum exhibited overgrowth, negatively impacting rind appearance, underrind consistency and thickness and off-flavor flaws. Salt concentration of 2.4% induced death of G. candidum. Four bacteria (A. arilaitensis, B. aurantiacum, C. casei, and H. alvei) were moderately sensitive to salt while S. equorum was insensitive to it. Salt level in cheese had a significant effect on carbon substrate consumption rates. Lactate consumption rate in 1.0% salted cheeses was approximately twice higher than under 2.4% NaCl. Data analysis of microorganism, biochemical, and physicochemical kinetics and sensory analysis showed that the best salt level in Munster-type cheeses to achieve an optimum balance between cheese characteristics, sensory qualities and marketability was 1.7% NaCl.

2.
J Dairy Res ; 73(4): 441-8, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16978429

ABSTRACT

The growth of five bacteria isolated from red-smear cheeses, Brevibacterium aurantiacum, Corynebacterium casei, Corynebacterium variabile, Microbacterium gubbeenense and Staphylococcus saprophyticus in mixed cultures with Debaryomyces hansenii on aseptic model cheese curd at 10 and 14 degrees C was investigated. At both temperatures, C. casei and Micro. gubbeenense had a longer lag phase than C. variabile, Brevi. aurantiacum and Staph. saprophyticus. In all cultures, lactose was utilised first and was consumed more rapidly at 14 degrees C than at 10 degrees C, i.e., 6 d at 14 degrees C and 10 d at 10 degrees C. This utilisation coincided with the exponential growth of Deb. hansenii on the cheese surface. Lactate was also used as a carbon source and was totally consumed after 21 d at 14 degrees C and approximately 90% was consumed after 21 d at 10 degrees C regardless of the ripening culture. Small differences (<0.5 pH unit) in the surface-pH during ripening were noticeable between ripening cultures. Differences in the colour development of the mixed cultures with the yeast control were only noticeable after 15 d for Brevi. aurantiacum and after 21 d for the other bacteria. Regardless of the organisms tested, colour development and colour intensity were also greater at 14 degrees C than at 10 degrees C. This study has provided useful information on the growth and contribution to colour development of these bacteria on cheese.


Subject(s)
Cheese/microbiology , Fermentation , Food Handling/methods , Food Microbiology , Saccharomycetales/growth & development , Brevibacterium/growth & development , Colony Count, Microbial , Color , Corynebacterium/growth & development , Hydrogen-Ion Concentration , Saccharomycetales/metabolism , Staphylococcus/growth & development , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL